在自然界,荷叶拥有相当卓越的疏水特性和自洁能力,水落在上面,都会缩成圆圆的球形,很容易滚落,也很容易带走污物。这也就是著名的“荷叶效应”。
要想了解荷叶效应背后的原理,我们需要在显微镜下看看荷叶的微观结构:
原来在荷叶叶面上存在着非常复杂的多重纳米和微米级的超微结构。在超高分辨率显微镜下可以清晰看到,荷叶表面上有许多微小的乳突,乳突的平均大小约为10微米,平均间距约12微米。而每个乳突有许多直径为200纳米左右的突起组成的。在荷叶叶面上布满着一个挨一个隆起的“小山包”,它上面长满绒毛,在“山包”顶又长出一个馒头状的“碉堡”凸顶。因此,在“山包”间的凹陷部份充满着空气,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上“山包”的凸顶形成几个点接触。雨点在自身的表面张力作用下形成球状,水球在滚动中吸附灰尘,并滚出叶面,这就是“莲花效应”能自洁叶面的奥妙所在。
自然界的现象给了科学家无限的想象与创意。把透明疏油、疏水的纳米材料颗粒作成涂料涂刷在建筑物表面,大楼不会被空气中的油污弄脏,镀在窗户玻璃表面上,玻璃也如同荷叶一般自净而永远透明。或将这种纳米颗粒放到纤维中,做成防尘的衣物,也许可省去不少洗衣的麻烦。
荷叶效应即是防油、防污、防水三防面料的原理。